首页> 外文OA文献 >Classification of HEp-2 staining patterns in ImmunoFluorescence images. Comparison of Support Vector Machines and Subclass Discriminant Analysis strategies
【2h】

Classification of HEp-2 staining patterns in ImmunoFluorescence images. Comparison of Support Vector Machines and Subclass Discriminant Analysis strategies

机译:免疫荧光图像中HEp-2染色模式的分类。支持向量机与子类判别分析策略的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

nti-nuclear antibodies test is based on the visual evaluation of the intensity and staining pattern in HEp-2 cell slides by means of indirect immunofluorescence (IIF) imaging, revealing the presence of autoantibodies responsible for important immune pathologies. In particular, the categorization of the staining pattern is crucial for differential diagnosis, because it provides information about autoantibodies type. Their manual classification is very time-consuming and not very reliable, since it depends on the subjectivity and on the experience of the specialist. This motivates the growing demand for computer-aided solutions able to perform staining pattern classification in a fully automated way. In this work we compare two classification techniques, based respectively on Support Vector Machines and Subclass Discriminant Analysis. A set of textural features characterizing the available samples are first extracted. Then, a feature selection scheme is applied in order to produce different datasets, containing a limited number of image attributes that are best suited to the classification purpose. Experiments on IIF images showed that our computer-aided method is able to identify staining patterns with an average accuracy of about 91% and demonstrate, in this specific problem, a better performance of Subclass Discriminant Analysis with respect to Support Vector Machines
机译:nti核抗体测试是基于间接免疫荧光(IIF)成像对HEp-2细胞载玻片强度和染色模式的目测评估,揭示了负责重要免疫病理的自身抗体的存在。特别地,染色模式的分类对于鉴别诊断至关重要,因为它提供了有关自身抗体类型的信息。他们的手动分类非常耗时,而且不太可靠,因为它取决于主观性和专家的经验。这激发了对能够以全自动方式执行染色模式分类的计算机辅助解决方案的不断增长的需求。在这项工作中,我们比较了两种分别基于支持向量机和子类判别分析的分类技术。首先提取表征可用样本的一组纹理特征。然后,应用特征选择方案以产生不同的数据集,其中包含最适合分类目的的有限数量的图像属性。在IIF图像上进行的实验表明,我们的计算机辅助方法能够识别平均精度约为91%的染色模式,并在此特定问题上证明了与支持向量机相比,子类判别分析具有更好的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号